

K.M.G. COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

Approved by the Government of Tamil Nadu Permanently Affiliated to Thiruvalluvar University, Vellore. Recognized under Section 2(f) and 12(B) of the UGC Act 1956 Accredited by NAAC (2nd Cycle) with (CGPA of 3.24/4) 'A' Grade

DEPARTMENT OF MATHEMATICS

M.Sc., MATHEMATICS

SYLLABUS

(CHOICE BASED CREDIT SYSTEM)

Under

LEARNING OUTCOMES-BASED CURRICULUM

FRAMEWORK (LOCF)

(Effective for the Batch of Students Admitted from 2024-2025)

PREFACE

The curriculum of Postgraduate Mathematics is the study of quantity, structure, space and change, focusing on problem solving, with wider scope of application in science, engineering, technology, social sciences etc. The purpose of the outcome-based education is meant to provide an exposure to the fundamental aspects in different branches of Mathematics and its applications, keeping in mind the growing needs for higher education, employability, entrepreneurship and social responsibility. The periodical restructuring of the syllabi is carried out to fulfill the requirements of graduate attributes, qualification descriptors, programme learning outcomes and course outcomes. The outcome-based education enriches the curriculum to deliver the basic principles, synthetic strategies, mechanisms and application-oriented learning for the benefit of students. It also includes self-learning module, minor projects and industrial internship to enable students to get equipped for higher studies and employment. The programme also includes training to students for seminar presentation, preparation of internship reports, hands-on training in lab courses, synthesis and its analysis, developing leadership qualities, organization and participation in the interdepartmental academic competitions. The allied papers provide a platform to strengthen the understanding of the core subjects. The non-major elective courses offer chances to learn and augment interest in other related fields. The outcome-based curriculum is intended to enrich the learning pedagogy to global standards. ICT enabled teaching-learning platforms are provided to students along with the interaction of international Mathematicians. The seminars periodically delivered by subject experts and former professors would certainly help the students to update with latest technology/trends in different fields of Mathematics. The OBE based evaluation methods will reflect the true cognitive levels of the students as the curriculum is designed with course outcomes and cognitive level correlations as per BLOOM's Taxonomy.

In pursuit of the Higher Education Department Policy Note 2022-23 Demand 20, Section 1.4, Tamil Nādu State Council for Higher Education took initiative to revamp the curriculum. On 27 July 2022, a meeting was convened by the Member-Secretary Dr. S. Krishnasamy enlightening the need of the hour to restructure the curriculum of both Undergraduate and Post-graduate programmes based on the speeches at the Tamil Nādu Legislative Assembly Budget meeting by the Honourable Higher Education Minister Dr K. Ponmudy and Honourable Finance Minister Dr. P. Thiagarajan. At present there are three different modes of imparting education in most of the educational institutions throughout the globe. Outcome Based Education, Problem Based Education, and Project Based Education.

Now our Honourable Higher Education Minister announced Industry Aligned Education. During discussion, Member Secretary announced the importance of question papers and evaluation as envisaged by the Honourable Chief Secretary to Government Dr, V. IraiAnbu. This is very well imbedded in Revised Bloom's Taxonomy forms three learning domains: the cognitive (knowledge), affective(attitude), and psychomotor (skill). This classification enables to estimate the learning capabilities of students.

Briefly, it is aimed to restructure the curriculum as student-oriented, skill-based, and institution industry- interaction curriculum with the various courses under "Outcome Based Education with Problem Based Courses, Project Based Courses, and Industry Aligned Programmes" having revised Bloom's Taxonomy for evaluating students skills. Three domains:

(i)Cognitive Domain

(Lower levels: K1: Remembering ; K2: Understanding ; K3: Applying; Higher levels: K4: Analysing ; K5: Evaluating; K6: Creating)

(ii) Affective Domain

(iii) Psychomotor Domain

ABOUT THE COLLEGE

The College was founded in the new millennium 2000 by the vision of late Shri.K.M.Govindarajan fondly known as Iyah, with a mission to offer higher education in the fields of Arts and Science to the needy and the poor middle class students of this area and make them fully employable and economically self-reliant. With a humble beginning of launching an elementary school named Thiruvalluvar Elementary School in the year 1952, Iyah groomed it into a Higher Secondary School and later into a college. Education was his soul and breath. The college has grown into a full-fledged educational hub offering 12 under graduate programmes, 8 post graduate programmes, 5 M.Phil research programmes and 4 Ph.D programmes. The college has been accredited with 'A' grade by NAAC in 2nd cycle and recognized under section 2(f) & 12(B) of the UGC act 1956. The College is permanently affiliated to Thiruvalluvar University. The College is also acquired the status of Autonomous from the academic year 2024-2025. The College is an associate member of ICT Academy and registered member of NPTEL and Spoken Tutorials of IIT Bombay. The college is also a member of INFLIBNET and NDL.

VISION OF THE COLLEGE

Empower young men and women by educating them in the pursuit of excellence, character building and responsible citizen.

MISSION OF THE COLLEGE

Offer higher education in the fields of Arts, Science & Management to the needy and make them fully self-dependent.

QUALITY POLICY OF THE COLLEGE

KMG Students achieve the best learning results and personal growth with modern education that equip them for working life and a changing society to become deserving citizens.

ABOUT THE DEPARTMENT

The Department of Mathematics was Established in the Year 2007 and made a Steady Growth to the Height of Establishing Post Graduate Level in the Year 2010. The Department offers Research Programme (M.Phil) from 2013. Our Aim is to Promote Students in the field of Mathematics and working Knowledge of Mathematics. Every Year Department Organizes National Conference/Seminar, Association Activities and Special Lecture.

VISION OF THE DEPARTMENT

To Emerge as a Global Center of Learning, Academic Excellence, and Innovative Research.

MISSION OF THE DEPARTMENT

- Imparting of Quality Mathematics Education and the inculcating of the spirit of Research through Innovative Teaching and Research Methodologies.
- To Provide an Environment where Students can Learn, become Competent users of Mathematics, and Understand the use of Mathematics in Other Disciplines.

ROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1: Knowledge Enhancement and Application:** Graduates will demonstrate proficiency in their chosen discipline by applying theoretical knowledge and analytical skills to solve complex problems in diverse professional contexts.
- **PEO2:** Effective Communication and Leadership: Graduates will exhibit strong communication skills and leadership abilities, enabling them to effectively collaborate with diverse teams, convey ideas persuasively, and contribute positively to organizational goals.
- **PEO3:** Ethical Decision-Making and Social Responsibility: Graduates will uphold ethical principles and social responsibility in their professional practices, making informed decisions that consider the well-being of stakeholders and society at large.
- **PEO4:** Continuous Learning and Adaptability: Graduates will embrace a commitment to lifelong learning, continuously updating their knowledge and skills to remain agile and adaptable in dynamic work environments characterized by rapid technological advancements and evolving global trends.
- **PEO5:** Entrepreneurial Mindset and Innovation: Graduates will demonstrate an entrepreneurial mindset, leveraging their knowledge and skills to identify opportunities, innovate solutions, and potentially initiate and manage ventures that contribute to economic growth and societal development.

PROGRAM OUTCOMES (POs)

On successful completion of the programme, the students will be able to:

POs	Graduate Attributes	Statements							
PO1	Disciplinary Knowledge	Acquire detailed knowledge and expertise in all the disciplines of the subject.							
PO2	Communication Skills	Ability to express thoughts and ideas effectively in writing, listening and confidently Communicate with others using appropriate media							
PO3	Critical Thinking	Students will develop aptitude Integrate skills of analysis, critiquing, application and creativity.							
PO4	Analytical Reasoning	Familiarize to evaluate the reliability and relevance of evidence, collect, analyze and interpret data.							
PO5	Problem Solving	Capacity to extrapolate the learned competencies to solve different kinds of non-familiar problems.							
PO6	Employability and Entrepreneurial Skill	Employability and Entrepreneurial Skill Equip the skills in current trends and future expectation for placements and be efficient entrepreneurs by accelerating qualities to facilitate startups in the competitive environment.							
PO7	Individual and Team Leadership Skill	Capability to lead themselves and the team to achieve organizational goals and contribute significantly to society.							
PO8	Multicultural Competence	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.							
PO 9	Moral and Ethical awareness/reasoning	Ability to embrace moral/ethical values in conducting one's life.							
PO10	Lifelong Learning	Identify the need for skills necessary to be successful in future at personal development and demands of work place.							

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the M.Sc., Mathematics, the students will be able to:

PSOs	Statements
PSO1	Acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics.
PSO2	Understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.
PSO3	To prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions. To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

Correlation Rubrics:

High	Moderate	Low	No Correlation
3	2	1	-

Mapping of PSOs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
PSO1	3	3	3	3	3	3	1	-	-	2
PSO2	3	2	3	3	3	3	1	-	-	2
PSO3	3	3	3	3	3	3	1	-	-	3

K.M.G. COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

Subject and Credit System- M.Sc., Mathematics

(Effective for the Batch of Students Admitted from 2024-2025)

Comoston	Dant	Catagory	Course Code	urse Code Course Title		Cuadit	Maximum Marks		
Semester	Part	Category	Course Code	Course Thie	/ Week	Credit	Internal	External	Total
		Core Paper-I	APCMA11	Algebraic Structures	7	5	25	75	100
		Core Paper-II	APCMA12	Real Analysis - I	7	5	25	75	100
		Core Paper-III	APCMA13	Ordinary Differential Equations	6	4	25	75	100
			APEMA14A	Number Theory and Cryptography				75	100
			APEMA14B	Graph Theory and Applications			25		
·		Elective Course-I	APEMA14C	Formal Languages and Automata	5	3			
IER	art - J	(Choose any One)		Theory	5				
IES	P		APEMA14D	Programming in C++ and					
SEM				NumericalMethods					
•1			APEMA15A	Lie Groups and Lie Algebras					
		Elective Course-II	APEMA15B	Mathematical Programming	5	2	25	75	100
		(Choose any One)	APEMA15C	Fuzzy Sets and Their Applications		5	23		
			APEMA15D	Discrete Mathematics					
		1	1	30	20				
	1				1	1	1		<u> </u>

G (C Tru	Ins.Hrs		Maximum Marks		
Semester	Part	Category	Course Code Course Thie		/ Week	Credit	Internal	External	Total
		Core Paper-IV	APCMA21	Advanced Algebra	6	5	25	75	100
		Core Paper-V	APCMA22	Real Analysis - II	6	5	25	75	100
		Core Paper-VI	APCMA23	Partial Differential Equations	6	4	25	75	100
			APEMA24A	Reliability and Queuing Theory					
		Elective Course-III	APEMA24B	Mathematical Statistics	2	2			100
		(Choose any One)	APEMA24C	R Programming Language (OnlyPractical)	- 3	5	25	75	
П			APEMA24D	Tensor Analysis and Relativity	-				
			APEMA25A	Wavelets			25	75	100
	_	Elective Course-IV	APEMA25B	Machine Learning and Artificial Intelligence	3	3			
		(Choose any One)	APEMA25C	Neural Networks		5		10	
- R	Part		APEMA25D	Difference Equations					
LLS			APSMA26A	Office Automation and ICT Tools					100
EME			APSMA26B	Computational Mathematics using Sage Math				75	
$\mathbf{\Sigma}$		Skill Enhancement	APSMA26C	Mathematical documentation using LATEX / other packages	-				
		Course-I	APSMA26D	Numerical analysis using SCILAB	4	2	25		
		(Choose any One)	APSMA26E	Differential equations using SCILAB					
			APSMA26F	Industrial Mathematics/Statisticsusing latest programming packages	-				
			APSMA26G	Research Tools and Techniques					
	Part	Compulsory	APHR20	Human Rights	2	2	25	75	100
	II	II Compulsory APMOOC20 MOOC Course			-	2	-	100	100
			1	Semester Total	30	26			

6	D. (C. A.	Cotogowy Course Code Course Title		Ins.Hrs	Credit	Maximum Marks		
Semester	Part	Category	Course Code	Course Title	/ Week	Credit	Internal	External	Total
		Core Paper-VII	APCMA31	Complex Analysis	6	5	25	75	100
		Core Paper-VIII	APCMA32	Probability Theory	6	5	25	75	100
		Core Paper-IX	APCMA33	Topology	6	5	25	75	100
		Core Paper-X	APCMA34	Mechanics(Industry Modules)	6	4	25	75	100
			APEMA35A	Fluid Dynamics					
	П	Elective Course-V	APEMA35B	Algebraic Number Theory	3	3	25	75	100
ER	- T	(Choose any One)	APEMA35C	Stochastic Processes			23	75	100
II	art		APEMA35D	Mathematical Python					
IMES	<u></u>	Skill Enhancement Course-II	APSMA36	Professional Communication Skill - Term paper & Seminar presentation	3	2	25	75	100
SE		Compulsory	APIMA37	(Carried out in Summer Vacation at the end of I year – 30 hours) Summer Internship Report to be submitted to the Department.	-	2	100	-	100
				Semester Total	30	26			
	1				•••	_0			
		Core Paper-XI	6	5	25	75	100		
		Core Paper-XII	6	5	25	75	100		
		Core Paper-XIII	APPMA43	Project with viva voce	10	7	25	75	100
		•	APEMA44A	Financial Mathematics					
		Elective Course-VI	APEMA44B	Resource Management Techniques	4	2		75	100
~		(Choose any One)	APEMA44C	Modeling and Simulation with Excel	4	3	25	/5	
N	<u> </u>	•	APEMA44D	Mathematical Python - Practical					
SEMESTER -	Part -	Professional Competency Skill Enhancement Course (Choose any One)	APSMA45A	1.Training for Competitive Examinations Mathematics for NET / UGC - CSIR/ SET/TRB Competitive Examinations (2 hours) 2.General Studies for UPSC/TNPSC/ Other Competitive Examinations (2 rs)	4	2	25	75	
			APSMA45B	MA45B Mathematics for Advanced Research Studies (4 hours)					
	Part - II	Compulsory	APEA40	Extension Activity	-	1	100	-	100
				Semester Total	30	23			

Parts	Semester-I	Semester-II	Semester-III	Semester-IV	Total Credits
Part-I	20	22	26	22	90
Part-II	-	04	-	01	05
Total	Total 20		26	23	95

Consolidated Semester wise and Component wise Credit distribution

*Part I and Part II components will be separately taken into account for CGPA calculation and classification for the post graduate programme and has to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree.

Title of the Course	ALGEBRAIC STRUCTURES	Hours/Week	07
Course Code	APCMA11	Credits	05
Category	CORE- I	Year & Semester	I & I
Prerequisites	UG Level Modern Algebra	Regulation	2024

Objectives of the course:

To introduce the concepts and to develop working knowledge on class equation, solvability of groups, finite abelian groups, linear transformations, real quadratic forms

UNITS	Contents	COs	Cognitive Levels				
I-TINU	Counting Principle - Class equation for finite groups and its applications - Sylow's theorems (For theorem 2.12.1, First proof only). Chapter 2: Sections 2.11 and 2.12 (Omit Lemma 2.12.5)	CO1	K1 K2 K3				
II-TINU	Solvable groups - Direct products - Finite abeliangroups- Modules Chapter 5 : Section 5.7 (Lemma 5.7.1, Lemma 5.7.2, Theorem 5.7.1) Chapter 2: Section 2.13 and 2.14 (Theorem 2.14.1 only) Chapter 4: Section 4.5	CO2	K1 K2 K3				
UNIT-III	Linear Transformations: Canonical forms – Triangularform - Nilpotent transformations. Chapter 6: Sections 6.4, 6.5	CO3	K1 K2 K3				
UNIT-IV	Jordan form - rational canonical form. Chapter 6 : Sections 6.6 and 6.7	CO4	K1 K2 K3				
V-TINU	Trace and transpose - Hermitian, unitary, normaltransformations, real quadratic form. Chapter 6 : Sections 6.8, 6.10 and 6.11 (Omit 6.9)						
Recomme 1.I.N. Her	ended Text Books estein. <i>Topics in Algebra</i> (II Edition) Wiley Eastern Limited, New	Delhi,	1975.				

Reference Books

- 1. M.Artin, Algebra, Prentice Hall of India, 1991.
- 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, *Basic Abstract Algebra* (II Edition) Cambridge University Press, 1997. (IndianEdition)
- 3. I.S.Luther and I.B.S.Passi, *Algebra*, Vol. I–Groups(1996); Vol.II Rings, Narosa Publishing House, New Delhi, 1999

4. D.S.Malik, J.N. Mordeson and M.K.Sen, *Fundamental of Abstract Algebra*, McGraw Hill (International Edition), NewYork. 1997.

5.N.Jacobson, *Basic Algebra*, Vol. I & II W.H.Freeman (1980);also published by Hindustan Publishing Company, New Delhi.

Website and e-learning source

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.algebra.com

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	To Demonstrate ability to think group actions.	K1,K2,K3
CO2	Know the internal and external direct product of groups	K1,K2,K3
CO3	Formulate the concept Canonical & Triangular forms, Nilpotent transformations.	K1,K2,K3
CO4	To Know module and difference between Jordan - rational canonical form	K1,K2,K3
CO5	Explain the properties of trace and transpose matrix form	K1,K2,K3,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	3	2	3	3	1	-	-	1	3	2	2
CO2	2	1	3	1	3	3	1	-	-	1	3	2	2
CO3	3	2	3	1	3	3	1	-	-	1	3	2	2
CO4	1	2	3	2	3	3	1	-	-	1	3	2	1
CO5	3	1	2	3	3	3	1	_	_	1	3	2	1

Title of the Course	REAL ANALYSIS - I	Hours/Week	07
Course Code	APCMA12	Credits	05
Category	CORE -II	Year & Semester	I & I
Prerequisites	UG Level Real Analysis Concepts	Regulation	2024

COURSE DESCRIPTORS

Objectives of the course:

To work comfortably with functions of bounded variation, Riemann- Stieltjes Integration, convergence of infinite series, infinite product and uniform convergence and its interplay between various limiting operations.

LINITS	Contonts	COs	Cognitive
UNIIS	Contents		Levels
I-TINU	 Functions of Bounded Variation - Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation - Additive property of total variation - Total variation on [a, x] as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation. Chapter – 6 : Sections 6.1 to 6.8 Infinite Series: Absolute and conditional convergence - Dirichlet'stest and Abel's test - Rearrangement of series - Riemann's theorem on conditionally convergent series. Chapter 8 : Sections 8.8, 8.15, 8.17, 8.18 	CO1	K1 K2 K3 K4
II-LINU	 The Riemann - Stieltjes Integral - Introduction - Notatio The definition of the Riemann - Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral – Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems. Chapter - 7 : Sections 7.1 to 7.14 	CO2	K1 K2 K3

III-TINU	The Riemann-Stieltjes Integral - Integrators of bounded variation- Sufficient conditions for the existence of Riemann-Stieltjes integrals-Necessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval – Second fundamental theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral- Riemann- Stieltjes integrals depending on a parameter- Differentiation under integral sign-Lebesgue criteriaon for existence of Riemann integrals. Chapter - 7 : 7.15 to 7.26	CO3	K1 K2 K3			
UNIT-IV	 Infinite Series and infinite Products - Double sequences -Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products. Chapter - 8 Sec, 8.20, 8.21 to 8.26 Power series - Multiplication of power series - The Taylor's series generated by a function - Bernstein's theorem - Abel's limit theorem - Tauber's theorem Chapter 9 : Sections 9.14 9.15, 9.19, 9.20, 9.22, 9.23 	CO4	K1 K2 K3			
UNIT-V	 Sequences of Functions – Point wise convergence of sequences of functions - Examples of sequences of real - valued functions - Uniform convergence and continuity - Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann - Stieltjes integration – Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of aseries - Mean convergence. Chapter -9 Sec 9.1 to 9.6, 9.8, 9.9, 9.10, 9.11, 9.13 	CO5	K1 K2 K3			
Recommended Text Books 1. Tom M.Apostol : Mathematical Analysis, 2 nd Edition, Addison-Wesley Publishing Company Inc. New York, 1974.						
Reference 1. Bartle 2. Rudin, 1976. 3. Malik, 4. Sanjay 1991. 5. Gelba 1964. 6.A.L.Gu	e Books e, R.G. <i>Real Analysis</i> , John Wiley and Sons Inc., 1976. ,W. <i>Principles of Mathematical Analysis</i> , 3 rd Edition. McGrawHill Comp ,S.C. and Savita Arora. <i>Mathematical Anslysis</i> , Wiley EasternLimited.N y Arora and Bansi Lal, <i>Introduction to Real Analysis</i> , SatyaPrakashar num, B.R. and J. Olmsted, <i>Counter Examples in Analysis</i> ,Holden day, Satya pupta and N.R.Gupta, <i>Principles of Real Analysis</i> , PearsonEducation, (Inc.	pany, N ew Delł n, New I an Franc lian prin	ew York, ni, 1991. Delhi, Eisco, t) 2003.			

Website and e-learning source

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,

http://www.opensource.org, www.mathpages.com

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Analyze and evaluate functions of bounded variation and Rectifiable Curves.	K1,K2,K3, K4
CO2	Describe the concept of Riemann-Stieltjes integral and its properties.	K1,K2,K3
CO3	Demonstrate the concept of step function, upper function, Lebesgue function and their integrals.	K1,K2,K3
CO4	Construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levimonotone convergence theorem.	K1,K2,K3
CO5	Formulate the concept and properties of inner products, norms and measurable functions.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	3	2	3	3	1	-	-	1	3	2	3
CO2	2	1	3	1	3	3	1	-	-	1	3	2	2
CO3	3	2	3	1	3	3	1	-	-	1	3	2	2
CO4	1	2	3	2	3	3	1	-	-	1	3	2	2
CO5	3	1	2	3	3	3	1	-	-	1	3	2	1

Title of the	ODDINA DV DIFFEDENTIAL FOLIATIONS	Hours/Wook	06	
Course	ORDINART DIFFERENTIAL EQUATIONS	HOULS/ WEEK	00	
Course Code	APCMA13	Credits	05	
Catagory	COPE III	Year &	181	
Category	CORE- III	Semester	1 & 1	
Prerequisites	UG Level Calculus and Differential Equations	Regulation	2024	

COURSE DESCRIPTORS

Objectives of the course:

> To develop strong background on finding solutions to lineardifferential equations with constant and variable coefficients and also with singular points, to study existence and uniqueness of the solutions of first order differential equations

UNITS	Contonts	COs	Cognitive
	Contents	COS	Levels
I-TIN	Linear equations with constant coefficients Second order homogeneous equations-Initial value problems-Linear dependence and independence-Wronskian and a formula for Wronskian Non-homogeneous equation of order two	CO1	K1 K2
D	Chapter 2: Sections 1 to 6		K3
II-TINU	Linear equations with constant coefficients Homogeneous and non-homogeneous equation of order n –Initial valueproblems- Annihilator method to solve non-homogeneous equation-Algebra of constant coefficient operators. Chapter 2 : Sections 7 to 12 .	CO2	K1 K2 K3
III-TINU	Linear equation with variable coefficients Initial value problems -Existence and uniqueness theorems – Solutions to solve a non-homogeneous equation – Wronskian and linear dependence – reduction of the order of a homogeneous equation – homogeneous equation with analytic coefficients-The Legendre equation. Chapter : 3 Sections 1 to 8 (Omit section 9)	CO3	K1 K2 K3 K4
AI-TINU	Linear equation with regular singular points Euler equation – Second order equations with regular singular points –Exceptional cases – Bessel Function. Chapter 4 : Sections 1 to 4 and 6 to 8 (Omit sections 5 and 9)	CO4	K1 K2 K3
V-TINU	Existence and uniqueness of solutions to first order equations: Equation with variable separated – Exact equation – method of successive approximations – the Lipschitz condition – convergence of the successive approximations and the existence theorem. Chapter 5 : Sections 1 to 6 (Omit Sections 7 to 9)	CO5	K1 K2 K3

1. E.A.Coddington, *A introduction to ordinary differential equations* (3rd Printing) Prentice-Hall of India Ltd., New Delhi, 1987.

Reference Books

- 1. Williams E. Boyce and Richard C. DI Prima, *Elementary differential equations and boundary value problems*, John Wileyand sons, New York, 1967.
- 2. George F Simmons, *Differential equations with applications and historical notes*, Tata McGraw Hill, New Delhi, 1974.
- 3. N.N. Lebedev, Special functions and their applications, Prentice Hall of India, New Delhi, 1965.
- 4. W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971
- 5. M.D.Raisinghania, Advanced Differential Equations, S.Chand & Company Ltd. New Delhi 2001
- 6. B.Rai, D.P.Choudary and H.I. Freedman, A Course in Ordinary

Differential Equations, Narosa Publishing House, New Delhi,2002.

Website and e-learning source

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.mathpages.com

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Establish the qualitative behavior of solutions of systems of differential equations.	K1,K2,K3
CO2	Recognize the physical phenomena modeled by differential equations and dynamical systems.	K1,K2,K3
CO3	Analyze solutions using appropriate methods and give examples.	K1,K2,K3,K4
CO4	Formulate Green's function for boundary value problems.	K1,K2,K3
CO5	Understand and use various theoretical ideas and results that underlie the mathematics in this course.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	1	3	2	3	3	2	-	-	1	3	2	3
CO2	2	1	3	1	3	3	2	-	-	1	3	2	2
CO3	3	2	3	1	3	3	2	-	-	1	3	2	3
CO4	1	2	3	2	3	3	2	-	-	1	3	2	1
CO5	3	1	2	3	3	3	2	-	-	1	3	2	2

COURSE DESCRIPTORS

Title of the Course	NUMBER THEORY AND CRYPTOGRAPHY	Hours/Week	05
Course Code	APEMA14A	Credits	03
Category	ELECTIVE-I	Year & Semester	I & I
Prerequisites	UG Level Number Theory	Regulation	2024

Objectives of the course:

- Demonstrate ability to learn elementary ideas from number theorywhich will haveapplications in cryptography.
- > Introduce various cryptosystems and apply them in the necessary fields.
- > Understand the concepts of public key and primarily.
- > Learn the public key cryptography and RSA algorithm
- Get the knowledge about Factoring concepts.

UNITS	Contents	COs	Cognitive Levels
I-T	UNIT–I: Some topics in Elementary Number Theory Time Estimates for doing arithmetic – Divisibility and	CO1	K1
INI	Euclidean Algorithm –Congruence's–Some Applications to Factoring. Chapter 1		K2 K3
Π	UNIT-II: Cryptography		K1
II.	Some simple cryptosystems – Enciphering matrices.	CO2	K2
N	Chapter 3		K3
Π	UNIT-III:		K1
I-T	Quadratics – Residues and reciprocity.	CO3	K2
INN	Chapter 2		K3
>	UNIT–IV: Public Key		K1
I-L	The idea of Public key Cryptography – RSA – DiscreteLaw– Knapsack –Zero–Knowledge		K2
INU	Chapter 4: Sections 1 to 5	CO4	K3
	UNIT-V:Primality and Factoring		K1
Γ-V	Pseudo-primes – The rho method – Fermat factorization and factor		K2
LINU	bases – The continued fraction method – The quadratic sieve method.	CO5	K3
_	Chapter 5: Sections 1 to 5		

1. Neal Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, New York, 1987

Reference Books

1.I.Niven and H.S.Zuckermann, An Introduction to Theory of Numbers(Edn. 3), Wiley Eastern Ltd., New Delhi, 1976 2.David M.Burton, Elementary Number Theory, Brown Publishers, Iowa, 1989

3.K.Ireland and M.Rosen, A Classical Introduction to ModernNumberTheory, Springer Verlag, 1972

4.N.Koblitz, Algebraic Aspects of Cryptography, Springer 1998.

Website and e-learning source

1. https://nptel.ac.in/courses/111101137

2. https://archive.nptel.ac.in/courses/106/103/106103015/

3.https://onlinecourses-archive.nptel.ac.in/noc17_cs36/preview

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Acquire the knowledge of elementary number theory	K1,K2,K3
CO2	Apply various cryptosystems and understand the concepts of quadratic, residues and reciprocity	K1,K2,K3
CO3	Develop the idea of public key cryptography, RSA Algorithms.	K1,K2,K3
CO4	Solve problems using the continued fraction method and the quadratic sieve method.	K1,K2,K3
CO5	Demonstrate ability to apply concepts of Fermat factorization and factor bases.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	3	1	-	-	1	3	3	2
CO2	3	3	3	2	2	2	1	-	-	1	3	3	2
CO3	3	3	3	2	3	3	1	-	-	1	3	3	3
CO4	3	3	3	3	3	3	1	-	-	1	3	3	2
CO5	3	3	3	3	3	3	1	-	-	1	3	3	3

COURSE I	DESCR	IPTORS
-----------------	-------	---------------

Title of the Course	GRAPH THEORY AND APPLICATIONS	Hours/Week	05
Course Code	APEMA14B	Credits	03
Category	ELECTIVE-I	Year & Semester	I & I
Prerequisites	UG Level Graph Theory	Regulation	2024

Objectives of the course:

To study and develop the concepts of graphs, sub graphs, trees, connectivity, Euler tours, Hamilton cycles, matching, coloring of graphs, independent sets, cliques, vertex coloring, and planar graphs

LINUTO	Contents	CO	Cognitive
UNIIS	Contents	COS	Levels
	Graphs, Sub graphs and Trees		V 1
.	Graphs and simple graphs - Graph Isomorphism - The Incidence and	CO1	KI
	Connection		K2
5	- Cycles - Trees - Cut Edges and Bonds - Cut Vertices.		K3
	Chapter 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3)		
H	Connectivity, Euler Tours and Hamilton Cycles		K 1
-TI	Connectivity - Blocks - Euler tours – Hamilton	CO2	K2
No.	Chapter 3 (Section 3.1 - 3.2) ; Chapter 4(Section 4.1 - 4.2)		K3
	Matchings, Edge Colourings		K1
I-T	Matchings - Matchings and Coverings in Bipartite Graphs –	CO3	K2
IN	Edge Chromatic Number - Vizing's Theorem.		К3
	Chapter 5 (Section 5.1 - 5.2) ; Chapter 6 (Section 6.1 - 6.2)		
>	Independent Sets and Cliques, Vertex Colourings		K 1
	Number -Brooks' Theorem - Chromatic Polynomials		
		CO4	N2
5	Chapter 7 (Section 7.1 – 7.2); Chapter 8 (Section 8.1 – 8.2, 8.4)		K3
	Planar Graphs		K1
^-	Plane and planar Graphs - Dual graphs - Euler's Formula -		K2
LIN	TheFive-Colour Theorem and the Four-Colour Conjecture.	CO5	K3
n	Chapter 9 (Section 9.1 - 9.3, 9.6)		

1.J.A.Bondy and U.S.R. Murthy, Graph Theory and Applications, Macmillan, London, 1976.

Reference Books

1.J.Clark and D.A.Holton, A First look at Graph Theory, AlliedPublishers, New Delhi,1995.
2.R. Gould. Graph Theory, Benjamin/Cummings, Menlo Park, 1989.
3.A.Gibbons, Algorithmic Graph Theory, CambridgeUniversity Press, Cambridge,1989.
4.R.J.Wilson and J.J.Watkins, Graphs : An IntroductoryApproach, John Wiley andSons, New York, 1989.
5.R.J. Wilson, Introduction to Graph Theory, PearsonEducation, 4th Edition, 2004,Indian Print.
6.S.A.Choudum, A First Course in Graph Theory, MacMillan India Ltd.1987.

Website and e-learning source

https://nptel.ac.in/courses/111106050/

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Graphs features and properties of various types of graphs.	K1,K2,K3
CO2	Demonstrate capacity of illustration for mathematical reasoning through analyzing, providing and explaining concepts of Eulerian circuits and Hamiltonicity in graphs.	K1,K2,K3
CO3	Understand the definitions and properties of matching and independent sets.	K1,K2,K3
CO4	Apply the concepts of graphs to model them in real life situations.	K1,K2,K3
CO5	Explicate the applications of planarity and colorability.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	3	2	-	-	1	3	3	2
CO2	3	3	2	2	2	3	2	-	-	1	3	3	2
CO3	3	3	2	2	3	3	2	-	-	1	3	3	2
CO4	3	3	3	3	3	3	2	-	-	1	3	3	2
CO5	3	3	3	3	3	3	2	-	-	1	3	3	3
	•		•		•		•	•	•			•	

Title of the Course	FORMAL LANGUAGES AND AUTOMATA THEORY	Hours/Week	05
Course Code	APEMA14C	Credits	03
Category	ELECTIVE-I	Year & Semester	I & I
Prerequisites	Elementary Algebra	Regulation	2024

Objectives of the course:

- The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.
- Classify machines by their power to recognize languages. Employ finite state machines to solve problems in computing
- > Explain deterministic and non-deterministic machines.

	Contonts	COs	Cognitive
UNITS	Contents	COS	Levels
I.	Finite Automata and Regular Expressions:	CO1	K1
Ĺ	deterministic Finite Automata- Finite Automata with Epsilon-	COI	K2
S	Transitions – Regular Expressions- Finite Automata and Regular Expressions.		К3
П	Properties of Regular Languages		K1
LI	Pumping Lemma for Regular Languages – Application of the Pumping Lemma – Closure Properties of Regular Languages –	CO2	K2
nn	Reversal– Homomorphism – Decision properties of Regular Languages –Converting NFA's to DFA'S – Minimization of DFA's.		К3
H	Context Free Grammars and Languages		K1
I-T	Free Grammars – Parse Trees – Normal forms for Context Free Grammars – Chomsky Normal Form – Greibach Normal Form.	CO3	K2
Z			К3
n			
>	Pushdown Automata Definition – The languages of a PDA – Equivalence of PDA's and		K1
I-I	CFG's – Deterministic Pushdown Automata.		К2
I		CO4	V2
D			КЭ
	Properties of Context-Free Languages		K1
L-V	The Pumping Lemma for Context-free Languages – Closure Properties of Context- Free Languages – Decision properties of	COF	K2
IN	CFL's.	05	K3
U			
	1		

1. Introduction to Automata Theory Languages and Computation^{||}. Hopcroft H.E. and Ullman J. D. Pearson Education.

2.Introduction to Theory of Computation - Sipser 2nd edition Thomson

Reference Books

1 .Languages and Computation, Pearson Education, 2013.A Salomaa , Formal Languages , Academic press , New York , 1973

2.John C. Martin, Introduction to Languages and theory of Computations (2ndEdn), Tata – McGraw Hill company Ltd., New Delhi, 1997.

3.Dr. Rani Siromoney, Formal Languages and Automata, The ChristianLiterature Society, 1979.

Website and e-learning source

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.mathpages.com

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	To gain knowledge of fundamental concepts of automata.	K1,K2,K3
CO2	To know properties of regular languages.	K1,K2,K3
CO3	To know finite automata theory.	K1,K2,K3
CO4	To Understand the concept of context free grammars and normal form.	K1,K2,K3
CO5	To know push down automata and context free languages.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	3	2	-	-	1	3	3	2
CO2	3	3	2	3	2	3	2	-	-	1	2	3	3
CO3	3	2	3	2	2	3	2	-	-	1	3	2	2
CO4	3	3	3	3	3	2	2	-	-	1	2	3	3
CO5	2	3	3	3	3	3	2	-	-	1	3	3	2

COURSE DESCRIPTORS

Title of the Course	PROGRAMMING IN C++ AND NUMERICAL ANALYSIS	Hours/Week	05
Course Code	APEMA14D	Credits	03
Category	ELECTIVE-I	Year & Semester	I & I
Prerequisites	-	Regulation	2024

Objectives of the course:

This course introduces a higher level language C++ and numerical methods for hands-on experience on computers. Stress is also given on the error analysis.

UNITS	Contents	COs	Cognitive
UNIIS	Contents		Levels
Ţ.	Principles of OOP-Tokens-Expressions, Control Structures	CO1	K1
TI	Functions-Classes and Objects-constructors and destructors.	COI	K2
5	Chapter 1 to 6		K3
Ι	Operator Overloading and type Conversions - Inheritance - Pointers,		K1
	Virtual Functions and Polymorphism-Managing Console I/O	CO2	K2
	Operations-Working with Files.		K3
	Chapter 7 to 11		
	Finite Digit Arithmetic and Errors		
	Floating point arithmetic - Propagated Error - Generated Error -		K1
I-I	Error in Evaluation of a function $f(x)$ Non-linear Equations:	CO3	K2
IN	Bisection method- Secant Method - Regula Falsi Method - Newton's		К3
	method - Muller's method - Fixed Point method.		
	Chapters 1,2 : Only 2.1 to 2.6		
	System of Linear Equations		
	Gauss- Emmation Method Crout's method - inverse of a matrix -		17.1
	Condition numbers and errors Jacobi's method - Gauss-Seidel		KI
LI	Method - Relaxation method. Numerical Differentiation and	CO4	K2
5	Integration: Numerical Differentiation - Numerical Integration -		K3
	Newton-Cotes Formulas - Gaussian Quadrature - Double Integral.		
	Chapter 3 and 5 : 5.1 to 5.5 and 5.7(omit 5.6)		

	Ordinary Differential Equations:		K1				
T-V	Difference equation - Differential Equations: Single Step method-	COF	K2				
IN	Runge-Kutta Method-Multi-step.	COS	К3				
n	Chapter 6: 6.1 to 6.4 (omit 6.5)						
Recomme	ended Text Books						
1. E. Ba 1999.	lagurusamy, Object Oriented Programming with C++, TataMcGraw I	Hill, Ne	w Delhi,				
2. Devi l	Prasad, An Introduction to Numerical Analysis (3rd edn)Narosa Publis	hing Ho	ouse, New				
Delhi, 20	06.						
Reference	e Books						
1. D. Ray	vichandran, Programming with C++, Tata McGraw Hill, NewDelhi, 199	96					
2. Conte	and de Boor, Numerical Analysis, McGraw Hill, New York, 1990						
3. John H Prentice	I.Mathews, Numerical Methods for Mathematics, Science andEngineerin Hall, New Delhi, 2000	ng (2nd	Edn.),				
Website a	nd e-learning source						
http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,							
http://ww	w.opensource.org, <u>www.mathpages.com</u>						

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Know the tokens expressions and control structures in C++.	K1,K2,K3
CO2	Understand the usage of all basic functions in C++.	K1,K2,K3
CO3	Comprehend the significance of various types of classes in C++.	K1,K2,K3
CO4	Acquire the knowledge about solving system of linear equations.	K1,K2,K3
CO5	Acquire the knowledge about solving ordinary differential equations.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	2	-	-	1	3	3	3
CO2	3	2	2	1	2	2	2	-	-	1	3	2	3
CO3	3	3	3	2	3	3	2	-	-	1	3	3	3
CO4	3	1	3	3	3	3	2	-	-	1	3	2	3
CO5	3	2	3	3	3	3	2	-	-	1	3	3	3

	COURSE DESCRIPTORS	-	
Title of the Course	LIE GROUPS and LIE ALGEBRAS	Hours/Week	05
Course Code	APEMA15A	Credits	03
Category	ELECTIVE-II	Year & Semester	I & I
Prerequisites	UG level linear algebra and matrix groups	Regulation	2024

Objectives of the course:

- ➢ In physics, Lie groups appear as symmetry groups of physical systems, and their Lie algebras (tangent vectors near the identity) may be thought of as infinitesimal symmetry motions.
- Lie algebras and their representations are used extensively in physics, Notably in quantum mechanics and particle physics

UNITS	Contents	COs	Cognitive
UNIIS	Contents		Levels
Ι	Matrix Lie Groups	GO1	K1
-TI		COI	K2
5			К3
II	The Matrix Exponential		K1
-TI	Chapter 2	CO2	K2
5			K3
II	Lie Algebras		K1
I-T	Chapter 3	CO3	K2
N			K3
Λ	Basic Representation Theory		K1
I-T	Chapter 4		K2
IN		CO4	K3
>	Semi simple Lie Algebras		K1
L.	Chapter 7		K2
N		CO5	K3
-			

1. Brain Hall, Lie Groups, Lie Algebras and Representations: An Elementary Introduction (Second Edition), Springer, USA, 2015.

Reference Books

1.V.S.Varadarajan, Lie groups, Liealgebras and their representations, Sringer 1984.

2. Brian Hall, Lie groups, Lie algebras and representations, Springer2003.

3. Barry Simon, Representations of finite and compact groups, AMS1996.

4.A. W. Knapp, Representation theory of semi smiple Lie groups. Anoverview based on examples, Princeton university press 2002.

5.S. Kumaresan S, A course in differential geometry and Lie groups, Texts and Readings in Mathematics, 22. Hindustan Book Agency, New Delhi, 2002.

Website and e-learning source

- 1. https://archive.nptel.ac.in/courses/111/108/111108134/
- 2. https://www.digimat.in/nptel/courses/video/111108134/L42.html

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Demonstrate systematic understanding of key aspects of Matrix Lie Groupsand Lie groups.	K1,K2,K3
CO2	Determine the exponential of a matrix.	K1,K2,K3
CO3	Differentiate Lie groups and Lie Algebras	K1,K2,K3
CO4	Find the representation of $s_1(2; C)$.	K1,K2,K3
CO5	Explain reductive Lie algebra	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	-	-	1	3	2	2
CO2	2	2	2	2	1	1	2	-	-	1	3	1	1
CO3	3	2	2	2	1	1	2	-	-	1	3	2	2
CO4	2	2	3	2	2	1	2	-	-	1	2	2	1
CO5	3	2	2	2	1	2	2	-	-	1	2	2	2

	COURSE DESCRIPTORS		
Title of the Course	MATHEMATICAL PROGRAMMING	Hours/Week	05
Course Code	APEMA15B	Credits	03
Category	ELECTIVE-II	Year & Semester	I & I
Prerequisites	UG Level Mathematical Programming	Regulation	2024

Objectives of the course:

> This course introduces advanced topics in Linear and non-linearProgramming.

UNITS	Contents	COs	Cognitive
			Levels
I-TINU	Integer Linear Programming Types of Integer Linear Programming Problems - Concept of Cutting Plane - Gomory's All Integer Cutting Plane Method - Gomory's mixed Integer Cutting Plane method - Branch and Bound Method Zero-One Integer Programming. Dynamic Programming: Characteristics of Dynamic Programming Problem - Developing Optimal Decision Policy - Dynamic Programming Under Certainty - DP approach to solve LPP. Chapter-7: 7.1 - 7.7 Chapter-20: 20.1 - 20.5	CO1	K1 K2 K3
II-TINU	Classical Optimization Methods Unconstrained Optimization - Constrained Multi-variable Optimization with Equality Constraints - Constrained Multi-variable Optimization with inequality Constraints Non-linear Programming Methods: Examples of NLPP - General NLPP - Graphical solution - Quadratic Programming - Wolfe's modified Simplex Methods - Beale's Method Chapter-23: 23.1 - 23.4 Chapter-24: 24.1 - 24.4	CO2	K1 K2 K3
III-LINU	Theory of Simplex Method Canonical and Standard form of LP - Slack and Surplus Variables - Reduction of any Feasible solution to a Basic Feasible solution - Alternative Optimal solution - Unbounded solution - Optimality conditions - Some complications and their resolutions - Degeneracy and its resolution. Chapter-25: 25.1 - 25.4, 25.6-25.9	CO3	K1 K2 K3
VI-TINU	Revised Simplex Method Standard forms for Revised simplex Method - Computational procedure for Standard form I - comparison of simplex method and Revised simplex Method. Bounded Variables LP problem: The simplex algorithm Chapter-26: 26.1 - 26.4 Chapter-28: 28.1, 28.2	CO4	K1 K2 K3

	Parametric Linear Programming Variation in the coefficients ci . Variations in the Right hand side, bi .		K1				
A-T	Goal Programming: Difference between LP and GP approach -	CO5	K2				
IN	Concept of Goal Programming - Goal Programming Model	COS	K3				
D	Modified Simplex method of Goal Programming.						
	Chapter-29: 29.1 - 29.3						
Recomme	nded Text Books						
.1. J.K.Sh Ltd.	arma, Operations Research, Theory and Applications, ThirdEdition (200	7) Mac	millan India				
Reference	Books						
1. Hamd	y A. Taha, Operations Research, (seventh edition) Prentice -Hall of Ind	dia Priv	ate				
Limited,	New Delhi, 1997.						
2. F.S. H	illier & J.Lieberman Introduction to Operation Research (7thEdition) T	'ataMcC	Graw Hill				
ompany,	New Delhi, 2001.						
3. Beigh	tler. C, D.Phillips, B. Wilde ,Foundations of Optimization(2nd Edition)	Prentice	e Hall				
Pvt Ltd.,	New York, 1979						
4.S.S. Ra	o - Optimization Theory and Applications, Wiley Eastern Ltd. New Dell	hi. 1990)				
Website a	nd e-learning source						
http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,							
http://ww	w.opensource.org, www.mathpages.com						
·							

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	To know about integer programming	K1,K2,K3
CO2	To know about optimization methods for solving non linear programming problems.	K1,K2,K3
CO3	To know simplex method for solving linear programming problems.	K1,K2,K3
CO4	To know revised simplex method for solving linear programming problems	K1,K2,K3
CO5	To know parametric linear programming problems.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	2	-	-	1	3	3	2
CO2	3	2	2	1	2	2	2	-	-	1	3	2	2
CO3	3	3	3	2	3	3	2	-	-	1	3	3	3
CO4	3	1	3	3	3	3	2	-	-	1	3	2	2
CO5	3	2	3	3	3	3	2	-	-	1	3	3	3

Title of the Course	FUZZY SETS AND THEIR APPLICATIONS	Hours/Week	05
Course Code	APEMA15C	Credits	03
Category	ELECTIVE-II	Year & Semester	I & I
Prerequisites	Knowledge of graphs, relations, composition	Regulation	2024

COURSE DESCRIPTORS

Objectives of the course:

Fuzzy is one of the latest topic in Mathematics that has real life applications. Hence it is essential for the students to learn this topic. This topic introduces the concept of uncertainty and fuzziness in logic that will enable the student to develop their intuitive mind further.

UNITS	Contents	COs	Cognitive Levels
I-TINU	Crisp sets and fuzzy sets Overview of Classical Sets, Membership Function, Height of a fuzzy set – Normal and sub normal fuzzy sets – Support – Level sets, fuzzy points, α -cuts – Decomposition Theorems, Extension Principle.	CO1	K1 K2 K3
II-LINU	Operation on fuzzy sets Standard fuzzy operations –Union, intersection and complement – properties De. Morgan's laws - zy sets – Support– Level sets, fuzzy points, α–Cuts of fuzzy operations.	CO2	K1 K2 K3
III-LINU	Fuzzy relations Cartesian Product, Crisp relations – cardinality – operations and properties of Crisp and Fuzzy relations. Image and inverse image of fuzzy sets - Various definitions of fuzzy operations – Generalizations – Non interacting fuzzy sets, Tolerance and equivalence relations.	CO3	K1 K2 K3
AI-TINU	Decision making in Fuzzy environments General Discussion – Individual Decision making – multi person decision making – multi criteria decision making – multi stage decision making – fuzzy ranking methods – fuzzy linear programming.	CO4	K1 K2 K3
A-TINU	Applications Medicine – Economics – Fuzzy Systems and Genetic Algorithms – Fuzzy Regression – Interpersonal Communication – Other Applications	CO5	K1 K2 K3

1. G.J. Klir, and Bo Yuan, Fuzzy Sets and fuzzy Logic: Theory and Applications, Prentice Hall of India Ltd., New Delhi, 2005.

Reference Books

1 .George J.Klir and Bo Yuan , Fuzzy sets and Fuzzy Logic Theory and Applications, PHI Leaning Private Limited, New Delhi (2009).

2.A.K. Bhargav, Fuzzy Set Theory, Fuzzy Logic and their Applications, published by S. Chand Pvt. Limited (2013).

3.K.Pundir and R.Pundir, Fuzzy sets and their application, Published by A Pragati edition (2012)

4.H.J.Zimmermann, Fuzzy set theory and its applications, Springer (2012).

Website and e-learning source

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.mathpages.com

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	To know the basic concepts of fuzzy logic.	K1,K2,K3
CO2	To know about the operations on fuzzy sets.	K1,K2,K3
CO3	To know about Fuzzy relations.	K1,K2,K3
CO4	To understand decision making in Fuzzy environments	K1,K2,K3
CO5	To know the applications of fuzzy logic in various fields.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	2	-	-	1	3	3	3
CO2	3	2	2	1	2	2	2	-	-	1	3	2	3
CO3	3	3	3	2	3	3	2	-	-	1	3	3	3
CO4	3	1	3	3	3	3	2	-	-	1	3	2	3
CO5	3	2	3	3	3	3	2	-	-	1	3	3	3

COURSE DESCRIPTORS

Title of the Course	DISCRETE MATHEMATICS	Hours/Week	05
Course Code	APEMA15D	Credits	03
Category	ELECTIVE-II	Year & Semester	I & I
Prerequisites	UG Level Discrete Mathematics	Regulation	2024

Objectives of the course:

- Introduce the algebraic structures of lattices and Boolean algebra.Construct the switching circuits with applications.
- > Educate the finite fields and its mathematics properties.
- > Inculcate the polynomials over finite fields,Irreducibility and factorization of polynomials.
- Indoctrinate the coding theory with the linear and cyclic codes

UNITS	Contents	COs	Cognitive Levels
I-LINU	Lattices Properties and Examples of Lattices – Distributive Lattices – Boolean Algebras – Boolean Polynomials - Minimal Forms of Boolean Polynomials. Chapter 1: Sections 1–6	CO1	K1 K2 K3
II-TINU	Applications of Lattices Switching Circuits – Applications of Switching Circuits. Chapter 2:Sections 7–8	CO2	K1 K2 K3
UNIT- III	Finite FieldsFinite Fields.Chapter 3:Sections 13	CO3	K1 K2 K3
AI-TINU	 Polynomials Irreducible Polynomials over Finite Fields - Factorization of Polynomialsover Finite Fields. Chapter 3:Sections 14–15 	CO4	K1 K2 K3
V-TINU	Coding Theory Linear Codes – Cyclic Codes. Chapter 4:Sections 17–18	CO5	K1 K2 K3

1. Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2nd IndianReprint, Springer Verlag,NewYork, 2006.

Reference Books

1.A.Gill, Applied Algebra for Computer Science, Prentice Hall Inc., NewJersey.

2.J.L.Gersting, Mathematical Structures for Computer Science, 3rdEdn.,

ComputerSciencePress, New York.

3.S.Wiitala, Discrete Mathematics - A Unified Approach, McGraw HillBook Co.

Website and e-learning source

1.https://nptel.ac.in/courses/111106050/http://www.discrete-math-hub.com/resources-and-help.html

2.<u>https://onlinecourses.nptel.ac.in/noc22_cs123/preview</u>

3. https://onlinecourses.nptel.ac.in/noc22_cs85/preview

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Know the algebraic structures of lattices and Boolean algebra, and sketch the minimization of Boolean polynomials.	K1,K2,K3
CO2	Model the switching circuits with applications.	K1,K2,K3
CO3	Understand the finite fields and its mathematics properties	K1,K2,K3
CO4	Acquire the notions of the polynomials over finite fields, Irreducibility and factorization of polynomials	K1,K2,K3
CO5	Apply the coding theory with the linear and cyclic codes in cryptography.	K1,K2,K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	3	2	-	-	1	3	3	2
CO2	3	3	2	2	3	3	2	-	-	1	3	3	3
CO3	3	3	2	2	2	3	2	-	-	1	3	3	2
CO4	3	3	2	2	3	3	2	-	-	1	3	3	2
CO5	3	3	2	2	3	3	2	-	-	1	3	3	3